EVALUATION OF THE APPLICABILITY OF THE MODEL

OF INCOMPRESSIBLE LIQUID IN THE CALCULATION
OF WATER HAMMER

G. D. Rozenberg and E. G. Leonov UDC 532.595.2

The article establishes the limits of applicability of the model of incompressibie liguid for

calculating water hammer. The time of closing the valve is determined at which periodic
oscillations do not arise.

To evaluate the effect of the compressibility of a liquid on the magnitude of water hammer, we use the
linearized equations of motion of a vigcous, slightly compressible liquid in pipes [1]
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In determining 2a, we average over the length of the pipe I and time t.

With x = 0 we will consider pressure to be constant, and the speed in the section x = | in cloging the

valve to be linearly dependent on time. Then the initial and boundary conditions for the perturbation of pres-
sure and speed may be represented in the form: for

<0 plx, 0)=w{x, 0)=0,
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If we use the method explained in {2], we find that the solution of the stated problem in Laplace trans-
forms has the form

Vi 5) = w, exp(—sT)—1 chix ,
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where

P(x, s) = T plx, exp(—st)dt; Vx, s)=
i
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In accordance with the rule of inverting Laplace transform
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Let us examine the integral
1 Y= Ashax

A= exp (st) ds. 7
= onr ) wepas P @

y—ioo

The integrand in (7) has obviously a pole of second order s = 0 and simple poles 8y corresponding to the roots
of the equation

chAl = cosirl = 0. (8)
Since the roots of Eq.(8) are equal to
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we have
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In examining relation (9), two cases are possible:
a) mc/2l > a, i.e., all ¥, are real numbers;

b) me/21 (2N —1) <a, mc/2l 2N + 1) > a, then Ypforn=1, 2, ..., N are imaginary, and forn =N +1,
N + 2, ... they are real numbers.

Both in case a) and in case b) all roots of (9) are in the left half plane, i.e., Re sy < 0, and in (7) we may
take v = 0.

To close the integration contour in (7), we will examine the sequence of arcs with radius Ry + (re/Dn,
n=1, 2, 3, ... with the center at the origin of coordinates, lying to the left of the imaginary axis. Since |sy| =
re/l (n—1/2), not one of the poles lies on the arcs with radius Ry,. It can also be shown [2] that on the men-
tioned arcs
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Then, in accordance with Jordan's lemma [3] fort > 0

1 Ashix N\ AshAx
A= e = exp(st)ds = E Res [ ——— exp (st , (10)
P oqi <S> s*chMdl P s*chM ) s=s,

¢ n=0

where the closed contourI* is formed by the imaginary axis and the arc Ry with n— .
If we calculate the residues in (10), we obtain after the respective transformations:
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where £y = iVp.
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With the aid of considerations similar to the ones presented above, we find that
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Now, in accordance with (5), (6), and the translation property in the operative calculus of [4] we obtain

the solution of the stated problem in the form

Pl B = PE0 1A (kB — A, (x, £ —T)],
w(x, )= — % [A,(x, H—A,x, ¢t —T),
where
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For an incompressible liquid (¢ = «) it follows from (1), (2), and (3) that
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Since expressions (11) and (12) are fairly cumbersome, we neglect the viscosity in evaluating the effect

of compressibility, i.e., we put @ = 0. Then, withx =1,
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The sums of the trigonometric series in (18) are equal to [5]
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Taking into account the periodicity of the expressions (19), we represent them in a more convenient
form: .
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—C—t———l——4m'), (20)
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where k, m are integers.

Then for t < T we have from (13)-(15), (18), and (20) that

P, =220 1 —a,
(21)
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where T* = ¢T/1; t* = ct/I. The integers k;, m,; are obviously determined from the conditions
4hy — 2 —T* < Aky + 2, 4my — 2 t* — 1 —T* < 4m, + 2. (23)

It follows from (13), (14), and (18) that with t > T, the functions p(Z, t), w(0, t) have a period equal to
41/ c.

Now, using (21) and (22), we will examine various cases of water hammer.

1. Direct Water Hammer, i.e., T* = 2. Analysis of formulas (20)-(23) leads to the known conclusion

that
max |p (I, 1) = pew,, max|w (0, 1)] = 2w,. (24)

2. Indirect Water Hammer, i.e., T* > 2. Fort*< T* we have from (20) and (21) that
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which coincides with Michaud's known formula [6].
It follows from (20), (22), and (23) that for t* > T*
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Thus, for T*> 2
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For perturbations of speed, with t* < T*, we have from (20)-(23) that
T+ 1
max (0, £) < < w,
with t* > T*
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Consequently, for T*> 2
T* +
max [w (0, )] < e (26)
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For an incompressible ideal liquid (¢ = 0) we have from (i6) and (17) that

max 0 (0, 4 = @, max|py (L, 0 = £ @)

independently of whether the water hammer is direct or indirect.

It follows from (24)-(27) that with direct water hammer (T* = 2)

max|p (L, O _

_ *, max iw (O, Z)] _ 2’ (28)
max |p; (1, 1) max |w (0, )]
and with indirect water hammer (T* > 2)
max|p(l, O 9 max |@ (0, &) < T#% 12 (29)
T T T k) ~ . .
max [pi(f, 9 max |w (0, ) T*

Thus, the model of incompressible liquid is inapplicable for evaluating the pressure perturbations
attending water hammer. In fact, when T*< 2, max §pi(l, t)| may be larger by any factor than max|p (,t)],
and when T* > 2, the ratio of these values is equal to two independently of the time of stopping of the flow.

Since p(¢, t), pj(, t) are the perturbations above the steady-state values of the pressure py(l) = py, the
pressures in a compressible and an incompressible liguid are respectively equal to:

prl ) =po-p D pTUL D= py+p. (I, 8.
Then in accordance with (25) and (29)

max [p* ({, 1)l 1
kil ' ST S T S R
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oWyl
Formula (30) makes it possible to evaluate the applicability of the model of incompressible liquid in the

calculation of pressures (but not perturbations) in dependence on the permissible error and the parameters of
the process.

30

We note the case T* =4i,i=1, 2, ... . Witht* > T* = 4i we have from (20) and (23) that 4k — 2 = ¢*
S4k+2, 4k 2 st* —4i=4k +2, m—2=tF —1=4m +2, 4my —2St* —1—4i=4m; + 2 and hence fol-
lows directly that k; +i =k, my +1 = m and in accordance with (22) that p(, t) = 0, w(0, t) = —w.

Consequently, with T* = 4i, residual oscillations do not originate in the pipe after the valve has been
closed, and the liquid is at rest.

NOTATION

p(x, t), w(x, t), perturbations of pressure and mean flow velocity, respectively, above their steady-
state values; p, density of the liquid; c, speed of sound; A, coefficient of hydraulic resistance in the Darcy—
Weissbach formula; d, pipe diameter; x, running length of the pipe; t, time; w,, mean steady-state flow velo-
city in the section; T, time of valve closure; s, parameter of the Laplace transform; Djs Wis perturbations
of pressure and velocity, respectively, in the flow of an incompressible liquid.
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